Dans cet article j'explique le fonctionnement des oscillateurs électroniques.
Le pendule
Avant d'expliquer l'oscillateur électronique je vais débuter par une analogie mécanique, le pendule, une balançoire en fait. l'enfant assis dans la balançoire apprend rapidement comment la mettre en mouvement mais aussi comment la freiner. Pour la mettre en mouvement il se laisse tomber vers l'arrière en tirant sur les cordes puis reprends sa position initiale. En répétant de mouvement il augmente l'amplitude des oscillations. Il n'applique pas cette force à n'importe quel moment met lorsque la balançoire atteint le point mort haut arrière, juste au moment ou la descente s'entame. Ainsi l'énergie qu'il apporte au pendule est en phase est le mouvement de celui-ci. Par contre lorsqu'il veut diminuer l'amplitude il pousse sur les cordes vers l'avant lorsqu'il est en ascension frontale. A ce moment l'énergie qu'il applique est en anti-phase.
Si on accrochait un crayon sur le bord du siège de la balançoire et qu'on faisait défiler a vitesse régulière un large bande de papier le long de la balançoire de sorte que le crayon frotte sur celle-ci, on verrait apparaître sur la bande de papier une onde sinusoïdale.
Circuit accordé
L'inductance et le condensateur sont en quelque sortent des composants complémentaires en électronique. En effet l'inductance accumule de l'énergie dans un champ magnétique et le condensateur dans dans un champ électrique. Si on les combines comme sur cette illustration on obtient un circuit accordé qui possède une fréquence de résonance.
Supposons le montage suivant:
C'est l'équivalent électronique de la balançoire. Si on enfonce le bouton le transistor Q1 entre en conduction et fourni de l'énergie au circuit accordé. Lorsqu'on relâche le bouton. Une certaine quantité d'énergie est accumulée dans le champ magnétique de l'inductance L et le champ électrique du condensateur c. Lorsque le transistor cesse de conduire le champ magnétique de l'inductance s'effondre créant une tension au bornes de celle-ci. Cette tension génère un courant qui va accumuler une charge supplémentaire dans le condensateur. Lorsque le champ magnétique est complètement effondré le condensateur ne reçoit plus de courant par contre il commence à se décharger à travers l'inductance. Ainsi l'énergie est transférée en alternance entre le champ magnétique et le champ électrique. La fréquence à laquelle cette oscillation se produit dépend des valeurs de L et C selon la formule Fosc=1/(2*PI*√(L*C)). C'est l'équivalent du pendule ou l'énergie oscille entre la forme énergie potentielle maximale lorsque le pendule est à l'arrêt aux extrémités de sa course et énergie cinétique maximale lorsque le pendule est au point le plus bas.Oscillateur électronique
Pour obtenir un oscillateur électronique dont l'oscillation est entretenue il suffit de peser sur le bouton au bon rythme et en phase avec l'oscillation du circuit accordé. Évidemment on ne peut faire ça à la main mais il y a une façon simple d'y arrivé. En récoltant une partie de l'énergie fournie au circuit accordée et en la renvoyant à l'entrée du transistor Q1 de sorte que ce signal une fois amplifié soit en phase avec l'oscillation naturelle du circuit accordée. On appelle ça une rétro-action positive. Examinons le circuit.
Ce montage s'appelle base commune car du point de vue de l'analyse circuit A.C. (courant alternatif) la base du transistor est maintenue au commun de l'alimentation (négatif de la pile dans ce schéma) à travers le condensateur C3 dont l'impédance (résistance AC) est très faible à la fréquence de fonctionnement de l'oscillateur. L'entrée de l'amplificateur ici c'est l'émetteur et le signal de rétro-action est fournie à travers C2. C2 est choisi de sorte qu'il y a suffisamment de signal qui est retourné à l'entrée de l'amplificateur pour maintenir une oscillation stable. Si C2 fourni trop de rétro-action au lieu d'avoir une onde sinusoïdale à la sortie on va avoir de la distorsion, sa valeur ne doit donc être ni trop grande ni trop petite.
J'ai mentionné le terme base commune. Il y a 3 types de montages pour les transistors bi-jonctions, base-commune, émetteur-commun qui est le plus utilisé et finalement collecteur-commun. On peut fabriquer un oscillateur avec n'importe quel type de montage. Le critère pour obtenir une oscillation soutenue est que le gain en boucle fermée soit >= 1. Avec un gain 1 l'onde est sinusoïdale, supérieur à 1 on ajoute de la distorsion. Un gain de 1 signifie qu'on ajoute juste de qu'il faut d'énergie au circuit accordé pour compenser les pertes du aux résistances parasites. A cette valeur de gain on obtient une onde sinusoïdale d'amplitude constante.
Oscillateur à cristal
J'ai commencé cet article par une analogie mécanique, l'oscillateur à cristal est intéressant parce qu'il est à la fois mécanique et électronique. En effet il utilise l'effet piézo-électrique qui est un phénomène électro-mécanique. Un cristal est constitué d'une lamelle de quartz avec une électrode sur chaque face. Lorsqu'une tension électrique est appliquée sur ces électrodes il y a une déformation mécanique du cristal. Lorsque cette tension électrique est relâchée le cristal oscille à une fréquence précise. Comme pour un pendule cette oscillation va s'amortir si elle n'est pas entretenue. N'essayer pas de sortir un cristal de son boitier pour le voir osciller, cette oscillation est à l'échelle microscopique au niveau du réseau d'atomes.
Le schéma suivant illustre un oscillateur à cristal dans un montage collecteur-commun. On l'appelle ainsi car le collecteur est au commun de l'alimentation car en haute fréquence la résistance entre le collecteur et le commun est à toute fin pratique nulle. Ici l'entrée de l'amplificateur c'est la base et la sortie c'est l'émetteur.
C1 et C2 forment un diviseur de tension qui permet de déterminer la valeur de la rétro-action. Ils ont aussi une influence sur la fréquence d'oscillation du cristal puisqu'ils sont en parallèle avec celui-ci.Oscillateur avec porte logique
Habituellement dans les montages en circuits logiques ont utilise des portes logiques pour fabriquer l'oscillateur. En voici une illustration.
Ici un inverseur est utilisé dans un montage dit Pierce gate oscillator. La résistance de 1M produit une rétro-action négative de sorte que la porte fonctionne comme un amplificateur linéaire au lieu de son mode logique normal. Notez qu'il s'agit d'un inverseur donc le signal en sortie est en anti-phase avec l'entrée. Donc pour produire une oscillation soutenue il faut ajouter un déphasage supplémentaire de 180 degrés. Un déphasage de 360 degrés est équivalent à 0 degrés donc en phase. Le réseau formé par XTAL,C1,C2,C3 produit le déphasage nécessaire. La résistance de 1K réduit l'intensité de la rétro-action. Les condensateurs C1,C2,C3 ont un influence sur la fréquence d'oscillation, c'est pourquoi C1 est ajustable. En pratique dans la majorité des cas on néglige l'installation de C1à moins que le montage requiert une très grande précision en fréquence. Les MCUs qui ont un circuit pour oscillateur à cristal en interne utilisent en fait ce type de montage.Pour conclure voici un vidéo qui montre comment fabriquer un mouchard qui transmet dans la bande FM. Une recherche dans Google permet de trouver de nombreux exemples de ce type de montage ainsi que plusieurs autres vidéo sur youtube.